Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 30: 421-437, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36420215

RESUMO

Increasing preclinical and clinical results have demonstrated that mRNA vaccines efficiently prevent infectious diseases and are safe in animal models and humans. In this study, we fabricated a multivalent influenza mRNA lipid nanoparticle (LNP) vaccine with mRNAs of hemagglutinins from influenza H1N1 and H3N2 viruses, matrix protein 1, and nucleoprotein. We found that cutaneous immunization with mRNA LNPs induced strong Th1 and Th2 cellular immunity with robust antigen-specific antibody titers and increased cytokine-secreting splenocytes and antibody-secreting cells. The supplement of cGAMP improved the immunogenicity of mRNA LNPs. Compared with αGC or cGAMP/αGC adjuvanted mRNA LNP formulations in our study, cGAMP mRNA LNPs induced more robust antibody responses. Enhanced cellular immunity with more IL-4 and IFN-γ secreting cells and effector memory T cell populations in spleens, as well as increased CD4+ resident memory (TRM) T cells in lungs were observed in cGAMP mRNA LNPs immunized group. These results demonstrated that cGAMP is an effective adjuvant for cutaneous vaccination of multivalent mRNA LNP vaccines in mice to induce stronger immune responses in the spleen and lung, and the cGAMP-adjuvanted mRNA LNPs protected against homologous and heterologous viral infection.

2.
Biomaterials ; 287: 121664, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810540

RESUMO

The influenza epidemics pose a significant threat to public health. Of them, type B influenza coincided with several severe flu outbreaks. The efficacy of the current seasonal flu vaccine is limited due to the antigenicity changes of circulating strains. In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates. In vitro studies found that the resulting protein nanoparticles were effectively taken up to activate dendritic cells. Nanoparticle immunization induced broadly reactive immune responses conferring robust and sustained cross-immune protection against influenza B virus strains of both lineages. The results reveal the potential of layered protein nanoparticles incorporated with structure-stabilized constant antigens as a universal influenza vaccine with improved immune protective potency and breadth.

3.
Small ; 18(25): e2200836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35607768

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic. The virus is rapidly evolving, characterized by the emergence of several major variants. Stable prefusion spike protein (Pre) is the immunogen in current vaccines but is limited in protecting against different variants. Here, the immune responses induced by the relatively conserved stem subunit (S2) of spike protein versus Pre are investigated. Pre generates the most robust neutralization responses against SARS-CoV-2 variants in vesicular stomatitis virus pseudovirus-based assessment but elicits less antibody-dependent cellular cytotoxicity (ADCC) activity than S2. By contrast, S2 induces the most balanced immunoglobulin G (IgG) antibodies with potent and broad ADCC activity although produces weaker neutralization. The immunogenicity of S2 and Pre improves by incorporating the two proteins into double-layered protein nanoparticles. The resulting protein nanoparticles Pre/S2 elicit higher neutralizing antibodies than Pre alone, and stronger ADCC than S2 alone. Moreover, nanoparticles produce more potent and balanced serum IgG antibodies than the corresponding soluble protein mixture, and the immune responses are sustained for at least four months after the immunization. Thus, the double-layered protein nanoparticles have the potential to be developed into broader SARS-CoV-2 vaccines with excellent safety profiles.


Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
ACS Appl Mater Interfaces ; 14(5): 6331-6342, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084819

RESUMO

The intranasal (i.n.) route is an ideal vaccination approach for infectious respiratory diseases like influenza. Polycationic polyethylenimine (PEI) could form nanoscale complexes with negatively charged viral glycoproteins. Here we fabricated PEI-hemagglutinin (HA) and PEI-HA/CpG nanoparticles and investigated their immune responses and protective efficacies with an i.n. vaccination regimen in mice. Our results revealed that the nanoparticles significantly enhanced HA immunogenicity, providing heterologous cross-protection. The conserved HA stalk region induced substantial antibodies in the nanoparticle immunization groups. In contrast to the Th2-biased, IgG1-dominant antibody response generated by PEI-HA nanoparticles, PEI-HA/CpG nanoparticles generated more robust and balanced IgG1/IgG2a antibody responses with augmented neutralization activity and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). PEI-HA/CpG nanoparticles also induced enhanced local and systemic cellular immune responses. These immune responses did not decay over six months of observation postimmunization. PEI and CpG synergized these comprehensive immune responses. Thus, the PEI-HA/CpG nanoparticle is a potential cross-protective influenza vaccine candidate. Polycationic PEI nanoplatforms merit future development into mucosal vaccine systems.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular/fisiologia , Imunidade Humoral/fisiologia , Nanopartículas/química , Polietilenoimina/química , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Formação de Anticorpos , Ilhas de CpG , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H3N2/metabolismo , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Th2/imunologia , Células Th2/metabolismo , Vacinação
5.
Nanomedicine ; 40: 102479, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743020

RESUMO

Influenza viral infection causes acute upper respiratory diseases in humans, posing severe risks to global public health. However, current vaccines provide limited protection against mismatched circulating influenza A viruses. Here, the immune responses induced in mice by novel double-layered protein nanoparticles were investigated. The nanoparticles were composed of influenza nucleoprotein (NP) cores and hemagglutinin (HA) or matrix 2 protein ectodomain (M2e) shells. Vaccination with the nanoparticles significantly enhanced M2e-specific serum antibody titers and concomitant ADCC responses. Robust NP-specific T cell responses and robust HA neutralization were also detected. Moreover, vaccination with a trivalent nanoparticle combination containing two routinely circulated HA, conserved M2e, and NP reduced lung virus titers, pulmonary pathologies, and weight loss after homologous virus challenge. This combination also improved survival rates against heterologous and heterosubtypic influenza virus challenges. Our results demonstrate that the trivalent combination elicited potent and long-lasting immune responses conferring influenza viral cross-protection.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Proteínas da Matriz Viral
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941704

RESUMO

Intranasal (i.n.) immunization is a promising vaccination route for infectious respiratory diseases such as influenza. Recombinant protein vaccines can overcome the safety concerns and long production phase of virus-based influenza vaccines. However, soluble protein vaccines are poorly immunogenic if administered by an i.n. route. Here, we report that polyethyleneimine-functionalized graphene oxide nanoparticles (GP nanoparticles) showed high antigen-loading capacities and superior immunoenhancing properties. Via a facile electrostatic adsorption approach, influenza hemagglutinin (HA) was incorporated into GP nanoparticles and maintained structural integrity and antigenicity. The resulting GP nanoparticles enhanced antigen internalization and promoted inflammatory cytokine production and JAWS II dendritic cell maturation. Compared with soluble HA, GP nanoparticle formulations induced significantly enhanced and cross-reactive immune responses at both systemic sites and mucosal surfaces in mice after i.n. immunization. In the absence of any additional adjuvant, the GP nanoparticle significantly boosted antigen-specific humoral and cellular immune responses, comparable to the acknowledged potent mucosal immunomodulator CpG. The robust immune responses conferred immune protection against challenges by homologous and heterologous viruses. Additionally, the solid self-adjuvant effect of GP nanoparticles may mask the role of CpG when coincorporated. In the absence of currently approved mucosal adjuvants, GP nanoparticles can be developed into potent i.n. influenza vaccines, providing broad protection. With versatility and flexibility, the GP nanoplatform can be easily adapted for constructing mucosal vaccines for different respiratory pathogens.


Assuntos
Reações Cruzadas/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Nanopartículas/química , Infecções por Orthomyxoviridae/imunologia , Administração Intranasal , Animais , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Grafite/química , Grafite/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Polietilenoimina/química , Vacinação/métodos
7.
Adv Healthc Mater ; 9(2): e1901176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840437

RESUMO

The development of a universal influenza vaccine is an ideal strategy to eliminate public health threats from influenza epidemics and pandemics. This ultimate goal is restricted by the low immunogenicity of conserved influenza epitopes. Layered protein nanoparticles composed of well-designed conserved influenza structures have shown improved immunogenicity with new physical and biochemical features. Herein, structure-stabilized influenza matrix protein 2 ectodomain (M2e) and M2e-neuraminidase fusion (M2e-NA) recombinant proteins are generated and M2e protein nanoparticles and double-layered M2e-NA protein nanoparticles are produced by ethanol desolvation and chemical crosslinking. Immunizations with these protein nanoparticles induce immune protection against different viruses of homologous and heterosubtypic NA in mice. Double-layered M2e-NA protein nanoparticles induce higher levels of humoral and cellular responses compared with their comprising protein mixture or M2e nanoparticles. Strong cytotoxic T cell responses are induced in the layered M2e-NA protein nanoparticle groups. Antibody responses contribute to the heterosubtypic NA immune protection. The protective immunity is long lasting. These results demonstrate that double-layered protein nanoparticles containing structure-stabilized M2e and NA can be developed into a universal influenza vaccine or a synergistic component of such vaccines. Layered protein nanoparticles can be a general vaccine platform for different pathogens.


Assuntos
Vacinas contra Influenza/imunologia , Nanopartículas/química , Neuraminidase/genética , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Animais , Reações Cruzadas , Soros Imunes , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/farmacologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia
8.
Nat Commun ; 9(1): 359, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367723

RESUMO

Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release.


Assuntos
Anticorpos Antivirais/imunologia , Hemaglutininas/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Nanopartículas , Infecções por Orthomyxoviridae/virologia , Animais , Humanos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Camundongos , Complexos Multiproteicos/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Filogenia
9.
J Control Release ; 261: 1-9, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28642154

RESUMO

The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines.


Assuntos
Vacinas contra Influenza/administração & dosagem , Agulhas , Pele/metabolismo , Vacinas de Produtos Inativados/administração & dosagem , Administração Cutânea , Animais , Formação de Anticorpos/imunologia , Cães , Feminino , Testes de Inibição da Hemaglutinação , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/química , Proteínas Recombinantes de Fusão/imunologia , Fatores de Tempo , Adesivo Transdérmico , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...